Characterization of mechanical behavior of a porcine pulmonary artery strip using a randomized uniaxial stretch and stretch-rate protocol
نویسندگان
چکیده
BACKGROUND Much of the experimental work in soft tissue mechanics has been focused on fitting approximate relations for specific tissue types from aggregate data on multiple samples of the tissue. Such relations are needed for modeling applications and have reasonable predictability - especially given the natural variance in specimens. There is, however, much theoretical and experimental work to be done in determining constitutive behaviors for particular specimens and tissues. In so doing, it may be possible to exploit the natural variation in tissue ultrastructure - so to relate ultrastructure composition to tissue behavior. Thus, this study focuses on an experimental method for determining constitutive behaviors and illustrates the method with analysis of a porcine pulmonary artery strip. The method characterizes the elastic part of the response (implicitly in terms of stretch) and the inelastic part in terms of short term stretch history (i.e., stretch-rate) Ht2, longer term stretch history Ht1, and time since the start of testing T. METHODS A uniaxial testing protocol with a random stretch and random stretch-rate was developed. The average stress at a particular stretch was chosen as the hyperelastic stress response, and deviation from the mean at this particular stretch is chosen as the inelastic deviation. Multivariable Linear Regression Analysis (MLRA) was utilized to verify if Ht2, Ht1, and T are important factors for characterizing the inelastic deviation. For acquiring Ht2 and Ht1, an integral function type of stretch history was employed with time constants chosen from the relaxation spectrum of an identical size strip from the same tissue with the same orientation. Finally, statistical models that characterize the inelasticity were developed at various, nominal values of stretch, and their predictive capability was examined. RESULTS Inelastic deviation from hyperelasticity was high (31%) for low stretch and declined significantly with increasing stretch to a nadir of 3.6% for a stretch of 1.7. The inelastic deviation then increased with increasing stretch at the same point in the stress-strain curve where stiffness began to increase strikingly. MLRA showed that T is a major inelastic parameter at low deformation. For moderate and high deformations, Ht2 and Ht1 were dominant. DISCUSSION A randomized uniaxial testing protocol was applied to a strip of porcine pulmonary artery to characterize the elasticity and inelasticity of a soft tissue. We were successful in determining the elastic response and the factors that gave rise to the inelastic deviation. This investigation seeks methods to better define, phenomenologically, the elastic and inelastic behavior of soft tissues.
منابع مشابه
Stretch calculated from grip distance accurately approximates mid-specimen stretch in large elastic arteries in uniaxial tensile tests.
The mechanical properties of vascular tissues affect hemodynamics and can alter disease progression. The uniaxial tensile test is a simple and effective method for determining the stress-strain relationship in arterial tissue ex vivo. To enable calculation of strain, stretch can be measured directly with image tracking of markers on the tissue or indirectly from the distance between the grips u...
متن کاملDevelopment of fibroblast-seeded collagen gels under planar biaxial mechanical constraints: a biomechanical study.
Prior studies indicated that mechanical loading influences cell turnover and matrix remodeling in tissues, suggesting that mechanical stimuli can play an active role in engineering artificial tissues. While most tissue culture studies focus on influence of uniaxial loading or constraints, effects of multi-axial loading or constraints on tissue development are far from clear. In this study, we e...
متن کاملStructural Mechanics Approach to Investigate the Hyperelastic Mechanical Behavior of Single and Multi-wall Carbon Nanotubes
In the current research, a three-dimensional finite element model was considered to predict the mechanical behavior of Single Wall (SWCNTs) and Multi Wall Carbon Nanotubes (MWCNTs). Assuming the nonlinear elastic behavior of C-C bond in large strains, hyperelastic models were considered. Literature review revealed that the material parameters of the hyperelastic models have been determined from...
متن کاملBehavioral Optimization of Pseudo-Neutral Hole in Hyperelastic Membranes Using Functionally graded Cables
Structures consisting of cables and membranes have been of interest to engineers due to their higher ratio of strength to weight and lower cost compared to other structures. One of the challenges in such structures is presence of holes in membranes, which leads to non-uniform stress and strain distributions, even under uniform far-field deformations. One of the approaches suggested for controll...
متن کاملImproved microstructure and mechanical properties of sheet metals in ultrasonic vibration enhanced biaxial stretch forming
Ultrasonic energy is used for applying severe plastic deformation on metal surfaces. In the present work, the effect of ultrasonic vibration on the formability, microhardness and microstructural proper...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- BioMedical Engineering OnLine
دوره 7 شماره
صفحات -
تاریخ انتشار 2008